Single Shot Detection (SSD) - Lite Version

Last updated on:4 days ago

SSDLite is widely used to demonstrate a new backbone’s detection capability. It was first introduced in MobileNetV2.

SSDLite

All regular convolutions are replaced with separable convolutions (depthwise followed by $1\times 1$ projection). The first layer of SSDLite is attached to layer 15 (with an output stride of 16). The the rest of the SSDLite layers are connected to the last layer (with an output stride of 32).

Codes

Mobilenetv2 forward: (be a feature extractor)

## MobileNetV2
def forward(self, x):
    features = []
    for i in range(14):
        x = self.features[i](x)
    features.append(x)
    for i in range(14, len(self.features)):
        x = self.features[i](x)
    features.append(x)
    for i in range(len(self.extras)):
        x = self.extras[i](x)
        features.append(x)
    return tuple(features)

Detector framework: (construct the detection architecture)

class SSDDetector(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.cfg = cfg
        self.backbone = build_backbone(cfg)
        self.box_head = build_box_head(cfg)
    def forward(self, images, targets=None):
        features = self.backbone(images)
        detections, detector_losses = self.box_head(features, targets)
        if self.training:
            return detector_losses
        return detections

SSDBoxHead:

@registry.BOX_HEADS.register('SSDBoxHead')
class SSDBoxHead(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.cfg = cfg
        self.predictor = make_box_predictor(cfg)
        # 
        if self.cfg.MODEL.BOX_HEAD.LOSS == 'FocalLoss':
            self.loss_evaluator = FocalLoss(0.25, 2)
        else: # By default, we use MultiBoxLoss
            self.loss_evaluator = MultiBoxLoss(neg_pos_ratio=cfg.MODEL.NEG_POS_RATIO)
        self.post_processor = PostProcessor(cfg)
        self.priors = None
    def forward(self, features, targets=None):
        cls_logits, bbox_pred = self.predictor(features)
        if self.training:
            return self._forward_train(cls_logits, bbox_pred, targets)
        else:
            return self._forward_test(cls_logits, bbox_pred)
    def _forward_train(self, cls_logits, bbox_pred, targets):
        gt_boxes, gt_labels = targets['boxes'], targets['labels']
        reg_loss, cls_loss = self.loss_evaluator(cls_logits, bbox_pred, gt_labels, gt_boxes)
        loss_dict = dict(
            reg_loss=reg_loss,
            cls_loss=cls_loss,
        )
        detections = (cls_logits, bbox_pred)
        return detections, loss_dict
    def _forward_test(self, cls_logits, bbox_pred):
        if self.priors is None:
            self.priors = PriorBox(self.cfg)().to(bbox_pred.device)
        # 
        if self.cfg.MODEL.BOX_HEAD.LOSS == 'FocalLoss':
            scores = cls_logits.sigmoid()
        else:
            scores = F.softmax(cls_logits, dim=2)
        boxes = box_utils.convert_locations_to_boxes(
            bbox_pred, self.priors, self.cfg.MODEL.CENTER_VARIANCE, self.cfg.MODEL.SIZE_VARIANCE
        )
        
        boxes = box_utils.center_form_to_corner_form(boxes)
        detections = (scores, boxes)
        detections = self.post_processor(detections)
        return detections, {}

Depthwise separable convolution:

class SeparableConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, onnx_compatible=False):
        super().__init__()
        ReLU = nn.ReLU if onnx_compatible else nn.ReLU6
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size,
                      groups=in_channels, stride=stride, padding=padding),
            nn.BatchNorm2d(in_channels),
            ReLU(),
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1),
        )
    def forward(self, x):
        return self.conv(x)

**BoxPredictor: **(The box predictor makes use of depthwise separable convolution.)

class BoxPredictor(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.cfg = cfg
        self.cls_headers = nn.ModuleList()
        self.reg_headers = nn.ModuleList()
        for level, (boxes_per_location, out_channels) in enumerate(zip(cfg.MODEL.PRIORS.BOXES_PER_LOCATION, cfg.MODEL.BACKBONE.OUT_CHANNELS)):
            cls_head = self.cls_block(level, out_channels, boxes_per_location)
            self.cls_headers.append(cls_head)
            reg_head = self.reg_block(level, out_channels, boxes_per_location)
            self.reg_headers.append(reg_head)
        self.reset_parameters()
        if self.cfg.MODEL.BOX_HEAD.LOSS == 'FocalLoss':
            for cls_head in self.cls_headers:
                for m in cls_head.modules():
                    if isinstance(m, nn.Conv2d):
                        m.apply(self.initialize_prior)
    def cls_block(self, level, out_channels, boxes_per_location):
        raise NotImplementedError
    def reg_block(self, level, out_channels, boxes_per_location):
        raise NotImplementedError
    def reset_parameters(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.xavier_uniform_(m.weight)
                nn.init.zeros_(m.bias)
    
    def initialize_prior(self, layer):
        pi = 0.01
        b = - math.log((1 - pi) / pi)
        nn.init.constant_(layer.bias, b)
        nn.init.normal_(layer.weight, std=0.01)
    def forward(self, features):
        cls_logits = []
        bbox_pred = []
        for feature, cls_header, reg_header in zip(features, self.cls_headers, self.reg_headers):
            cls_logits.append(cls_header(feature).permute(0, 2, 3, 1).contiguous())
            bbox_pred.append(reg_header(feature).permute(0, 2, 3, 1).contiguous())
        batch_size = features[0].shape[0]
        cls_logits = torch.cat([c.view(c.shape[0], -1) for c in cls_logits], dim=1).view(batch_size, -1, self.cfg.MODEL.NUM_CLASSES)
        bbox_pred = torch.cat([l.view(l.shape[0], -1) for l in bbox_pred], dim=1).view(batch_size, -1, 4)
        return cls_logits, bbox_pred

@registry.BOX_PREDICTORS.register('SSDBoxPredictor')
class SSDBoxPredictor(BoxPredictor):
    def cls_block(self, level, out_channels, boxes_per_location):
        return nn.Conv2d(out_channels, boxes_per_location * self.cfg.MODEL.NUM_CLASSES, kernel_size=3, stride=1, padding=1)
    def reg_block(self, level, out_channels, boxes_per_location):
        return nn.Conv2d(out_channels, boxes_per_location * 4, kernel_size=3, stride=1, padding=1)

@registry.BOX_PREDICTORS.register('SSDLiteBoxPredictor')
class SSDLiteBoxPredictor(BoxPredictor):
    def cls_block(self, level, out_channels, boxes_per_location):
        num_levels = len(self.cfg.MODEL.BACKBONE.OUT_CHANNELS)
        if level == num_levels - 1:
            return nn.Conv2d(out_channels, boxes_per_location * self.cfg.MODEL.NUM_CLASSES, kernel_size=1)
        return SeparableConv2d(out_channels, boxes_per_location * self.cfg.MODEL.NUM_CLASSES, kernel_size=3, stride=1, padding=1)
    def reg_block(self, level, out_channels, boxes_per_location):
        num_levels = len(self.cfg.MODEL.BACKBONE.OUT_CHANNELS)
        if level == num_levels - 1:
            return nn.Conv2d(out_channels, boxes_per_location * 4, kernel_size=1)
        return SeparableConv2d(out_channels, boxes_per_location * 4, kernel_size=3, stride=1, padding=1)

Reference

[1] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L.C., 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4510-4520).

[2] Mehta, S. and Rastegari, M., 2021. Mobilevit: light-weight, general-purpose, and mobile-friendly vision transformer. arXiv preprint arXiv:2110.02178.

[3] Andrew-Qibin/ssdlite-pytorch-mobilenext